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What I1s Resilience?
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A definition of resilience

‘The ability of a system, community or society
exposed to hazards to resist, absorb,
accommodate to and recover from the effects of a
hazard in a timely and efficient manner, including
through the preservation and restoration of its
essential basic structures and functions’

(UNISDR, 2009, p.24)
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Resilience

Precision: Resilience - an outcome, process or physical
property. May relate to physical features political
strategies, organisations or community capacity.

Circularity: There can be an element of circular
reasoning - is resilience a factor of, or the inverse of
vulnerability?

Context: Resilience Is influenced by scale and location,
cultural context and timing in relation to crises.

Completeness of knowledge: Interpretation of
resilience has led to competing views and uncertainty
around how ‘resilience’ should be described and
measured.




Resilience for a More Secure Future
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Resilience Interpretations
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{a) Euhlicke, 2010 (b) Chang efal., 2014 {c) Whlman and Short, 2008

MacAsKkill, K., Guthrie, P., 2014. Multiple Interpretations of Resilience in
Disaster Risk Management. 4th International Conference on Building
Resilience, 8-10 September, Salford Quays, United Kingdom. Elsevier BV
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Three Scenarios Developed
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SMART
NETWORKED CITY

The city as a hub within
a highly mobile and
competitive globally
networked society

Smart Networked City

Higher econorric growth

Increased urban densities and
new suburban development

Perwsive ICT: Omnipresent

real-tirne ronitorine and

COMPACT CITY

The city as a site of
intensive and efficient
urban living

Compact City

IModerate economic growth
with strong local governance

Higher urban densities
IMixed use neighbourhoods

—increase in neighbourhood
infrastructure

SELF-RELIANT
GREEN CITY

The city as a self-reliant bio-
region, living in harmony
with nature

Lower economic growth
Fall inurban densities

Cooperative and collectivist
vahes underpin new models
of shared ownership

Significant decrease in
overall energy consumption

Re-localisation of production
and consumption

Rise of utban agriculture

Green and blue space, local
biomass and biodiversity are
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Energy Efficiency in the Built Environment (EEBE)
Research Programme
Scenarios

Positive Attitudes/ Values

Transformational

Steady Progress
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Knowledge Mapping for
Future Proofing
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“A conceptual framework for

"i* future-proofing the energy performance of buildings”. Energy Policy; 47: 145-155

Georgiadou M C, Hacking T, Guthrie P., 2012.



Categorisation of Future-Proofed
Design Approaches

X;: Financial considerations
® X,.: Capital cost assessment

* Xq: Cost-Effectiveness Analysis

s X, Financial incentives

X,: Environmental
considerations

Hierarchical approach to low-
energy design

X;: Socio-economic

considerations

® Xs,: Sustainability information
and education

¢ X5,: Demand-side
management strategies

® X3 Assessment of energy-
related social impacts

_

Y-axis:

Adopting Lifecycle Thinking

Y,: Operational energy
performance
® Y,.: Predictive studies

* Y,,: Post-Construction Audit/
Post-Occupancy Evaluation

Y,: Embodied energy and carbon

® Y,.: Design for ‘cradle-to-gate’

* Y,.: Design for ‘cradle-to-grave’

* Y, Design for ‘cradle-to-cradle’

Y;: Lifecycle Assessment

® Ys,: Building material and/or
construction component scale

® Y, Building scale

e Y. District scale

Y,: Lifecycle Costing

Z-axis:
Accommodating Risks and
Uncertainties

Z,: Steady-state modelling

Z,: Adoption of standards
beyond statutory minima

Z;: Design for adaptive
capacity

® 73, Design for resilience to
overheating

s 7, Design for flexibility

Z,: Advanced future-

oriented analysis

® 74.: Dynamic building
performance evaluation

e 7, Stochastic modelling of
future overheating risk

* 7, Use of futures
techniques
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Z-axis: Accommodating Risks and Uncertainties
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Comprehensive
Future-Proofing

Future-Proofed Design of Low-Energy Housing Developments
Conceptual Framework and Case Studies from the UK and Sweden
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Agent Based Modelling (ABM)
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Scenarios can be tested
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Civil Infrastructure

« The framework upon which society can function

* Providing connectivity

* The building blocks of an integrated society

« Operationally interdependent but functionally separated
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Civil Infrastructure Characteristics

 Long life

 High initial investment

« Geographically widespread

« Compatibility with existing systems
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Civil Infrastructure

* Building on historic decisions and embedding them
(railways)

« Reinforcing existing systems (roads and railways)
* Enshrining distinctiveness
» Resulting obsolescence (canals)
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WEF Global Risks 2017

BR * Decision makers may see
e the provision of
_ Infrastructure as unlikely
The Global Risks

Report 2017 and of limited impact

12th Editi :
en » Risks of extreme event
may cause infrastructure
failure

* Infrastructure failure
through system collapse
AT § would lead to societal
breakdown
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World Economic Forum
Global Risks 2017

Figure 3: The Global Risks L andscape 2017
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Figure 3: The Global Risks Landscape 2017

4.0
Weapons of mass destruction
Extreme
weather events
58 Water crises ’
Natural disasters
Failure of climate-change
mitigation and adaptation ’ Large-scale
involuntary
) Unemployment or migration
36 Spread of infectious Food crises ‘ underemployment Interstate
diseases confiict Terrorist attacks
Biodiversity loss and ‘ :
ecosystem collapse ’ ol brises y d’Cyberaﬂacks
an-made
347 Failure of financial Failure of national environmental disasters
average mechanism or institution governance
Profound social
instability’ ‘Asset bubbles
3.4 -
Failure of regional or State collapse or crisis “\\
Critical information global governance 5
infrastructure breakdo 5 1
Faiure of critical Energy price shock ‘(\e
infrastructure co ’
c"\" e Data fraud or theft
32 ““
Deflation “as
.2\ )
Unmanageable infiation "\‘\ca Illicit trade
e ° “‘ e
g © ¢
Q Aciverse consequences of Failure of urban planning
E technological advances
—_—
4.0 45 - 50 55 6.0
4,92
average
Likelihood

plotted
area
5.0

o)

Glabal ABance
P Buildngs snd

Camatrurain



Resilience

Inversely proportional to economic development

Developing economies are excellent at absorbing shocks
- elastic

Sophisticated societies are strong and highly resistant -
but brittle
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Currently Potentially

 Total Assurance of » Design for
Non Failure Failure to Occur

« Assumption that  Design for
Failure is Graceful Failure
Catastrophic . Risk is Shared

» Risk Allocation is More Widely
Confined  Resource Use

* All Resource Use Now Balanced
Now is Allowable against Future

Impacts
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Sustainability in Infrastructure

* Designed from response to need
« Sustainabillity is retrofitted to the design

But ...

 Sustainability Goals should be the Starting
Point

* Infrastructure designed to meet these aims

International Co-owners;
|
t o W1 fos Budllings snd
- I W K |



Sustainability in Infrastructure

Sustainable Infrastructure iIs Infrastructure that is
Determined by Sustainable Development Goals
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Design Infrastructure in
Response to Need

Determine Engineering

Retrofit Sustainable
Development Aspects
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Design Infrastrr e in
Response e
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Set Sustainable
Development Vision

Introduce Societal Aspects

st Design Sustainable
Infrastructure

Figure 5: Map of shortlisted schemes
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Brean Down 1o Lavemaock
Pont Barrage

Shoots Barage

Beachley Barrage

Walsh Grounds Lagoon
Eridgwater Bay Lagoon ,

Figure 5: Map of shortlisted schemes
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Resilience for a More Secure Future
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Thank you
R

Peter Guthrie pmg3l@cam.ac.uk
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